暑期学习视频 作文 高一学习方法 高二学习方法 高三学习方法 高一学习计划 高二学习计划 高三学习计划 初中视频 高中视频

数学归纳法例题讲解

  来源:网络  作者:未知 今日点击:
站长推荐:名师直播答疑(免费观看)!

数学归纳法
归纳是一种有特殊事例导出一般原理的思维方法。归纳推理分完全归纳推理与不完全归纳推理两种。不完全归纳推理只根据一类事物中的部分对象具有的共同性质,推断该类事物全体都具有的性质,这种推理方法,在高中数学推理论证中是不允许的。完全归纳推理是在考察了一类事物的全部对象后归纳得出结论来。
数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,在解高中数学题中有着广泛的应用。它是一个递推的数学论证方法,论证的第一步是证明命题在n=1(或n )时成立,这是递推的基础;第二步是假设在n=k时命题成立,再证明n=k+1时命题也成立,这是无限递推下去的理论依据,它判断命题的正确性能否由特殊推广到一般,实际上它使命题的正确性突破了有限,达到无限。这两个步骤密切相关,缺一不可,完成了这两步,就可以断定“对任何自然数(或n≥n 且n∈N)结论都正确”。由这两步可以看出,高中数学归纳法是由递推实现归纳的,属于完全归纳。
运用高中数学归纳法证明问题时,关键是n=k+1时命题成立的推证,此步证明要具有目标意识,注意与最终要达到的解题目标进行分析比较,以此确定和调控解题的方向,使差异逐步减小,最终实现目标完成解题。
运用数学归纳法,可以证明下列问题:与自然数n有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等等。
Ⅰ、高中数学归纳法再现性题组:
1. 用数学归纳法证明(n+1)(n+2)…(n+n)=2 ·1·2…(2n-1)  (n∈N),从“k到k+1”,左端需乘的代数式为_____。
   A.  2k+1       B.  2(2k+1)      C.         D. 
2. 用高中数学归纳法证明1+ +…+ <n  (n>1)时,由n=k (k>1)不等式成立,推证n=k+1时,左边应增加的代数式的个数是_____。
   A.  2         B.  2 -1        C.  2         D.  2 +1
3. 某个命题与自然数n有关,若n=k  (k∈N)时该命题成立,那么可推得n=k+1时该命题也成立。现已知当n=5时该命题不成立,那么可推得______。     (94年上海高考)
   A.当n=6时该命题不成立        B.当n=6时该命题成立
   C.当n=4时该命题不成立        D.当n=4时该命题成立
4. 数列{a }中,已知a =1,当n≥2时a =a +2n-1,依次计算a 、a 、a 后,猜想a 的表达式是_____。
   A.  3n-2        B.  n            C.  3        D.  4n-3
5. 用高中数学归纳法证明3 +5   (n∈N)能被14整除,当n=k+1时对于式子3 +5 应变形为_______________________。
6. 设k棱柱有f(k)个对角面,则k+1棱柱对角面的个数为f(k+1)=f(k)+_________。
【简解】1小题:n=k时,左端的代数式是(k+1)(k+2)…(k+k),n=k+1时,左端的代数式是(k+2)(k+3)…(2k+1)(2k+2),所以应乘的代数式为 ,选B;
2小题:(2 -1)-(2 -1)=2 ,选C;
3小题:原命题与逆否命题等价,若n=k+1时命题不成立,则n=k命题不成立,选C。
4小题:计算出a =1、a =4、a =9、a =16再猜想a ,选B;
5小题:答案(3 +5 )3 +5 (5 -3 );
6小题:答案k-1。

数学归纳法例题讲解:的相关文章
高中数学裂项求和课堂实录

高中数学裂项求和 在我们高中《数列求和》的补充内容中,一共有两课时,第一节课 时讲 倒序相加法、分组求和法、裂项相消法 ,并引申出求通项公式的迭加(乘)法,第二节课 重点演练 乘比错位相减法 ,并补充求 通项公式的待定系数法 (形如 的数列。) ,裂

函数方程思想-重要数学思想

函数方程思想 函数方程思想就是用函数、方程的观点和方法处理变量或未知数之间的关系,从而解决问题的一种思维方式,是很重要的数学思想。 1.函数思想:把某变化过程中的一些相互制约的变量用函数关系表达出来,并研究这些量间的相互制约关系,最后解决问题,

高中数学:数学归纳法

数学归纳法 数学归纳是一种有特殊事例导出一般原理的思维方法。归纳推理分完全归纳推理与不完全归纳推理两种。不完全归纳推理只根据一类事物中的部分对象具有的共同性质,推断该类事物全体都具有的性质,这种推理方法,在数学推理论证中是不允许的。完全归纳

氮族元素结构特点例题讲解

氮族元素结构特点例题讲解 例1 砷为第四周期VA族元素,根据在周期表中的位置推测,砷不可能具有的性质是 A.砷在通常状况下为固体 B.可以有-3,+5等多种化合价 C.AS2O5对应水化物的酸性比H3PO4弱 D.砷的还原性比磷强 解析 砷在周期表中与N、P处在同一主族

数学归纳法例题讲解

数学归纳法 归纳是一种有特殊事例导出一般原理的思维方法。归纳推理分完全归纳推理与不完全归纳推理两种。不完全归纳推理只根据一类事物中的部分对象具有的共同性质,推断该类事物全体都具有的性质,这种推理方法,在高中数学推理论证中是不允许的。完全归纳

高中数学定义法解题思路示范

数学定义法 所谓定义法,就是直接用 高中数学定义 解题。高中数学中的定理、公式、性质和法则等,都是由定义和公理推演出来。定义是揭示概念内涵的逻辑方法,它通过指出概念所反映的事物的本质属性来明确概念。 定义是千百次实践后的必然结果,它科学地反映

推荐学习视频:高一、高二、高三视频(注册后免费学习20小时) (本文字数:1551)

关键词: 讲解,例题,归纳法,数学,数学归纳法
编辑:特约讲师